I was delighted to have been interviewed by Ed Yong for his article in The Atlantic magazine about the MinION DNA sequencer. I’ve been talking to the company, Oxford Nanopore Technologies, for quite some time now and I’m very excited by what these brilliant people might be able to achieve.

I’ve reproduced the extract where I’m featured, below, but if you visit the source link you can read the whole thing. I urge you to, it’s the future!

Thanks, Kris


Kris Griffin was 32 when he went to his doctor with a bad back, and came away with a diagnosis of chronic myeloid leukaemia. Thankfully, two drugs—first imatinib, and now dasatinib—have kept his cancer under control with minimal side effects. Eight years on, Griffin is doing well. He’s an education consultant based in Kidderminster, England; husband to a partner he married just after his diagnosis; and father to a four-year-old boy. “I live a normal life,” he says.

He isn’t cured, though. His disease is caused by the abnormal merger of two chromosomes, creating a chimeric gene called BCR-ABL that makes his blood cells divide uncontrollably. That’s what dasatinib inhibits. To check that the drug still works, Griffin has to visit a hospital several times a year, so his doctors can measure the number of cells that carry the fused gene. The trips eat into his days, and the results can take weeks to arrive. “And there’s no bigger reminder to someone that they’re doing poorly than walking through those doors,” Griffin says.

He has always dreamed of carrying out the tests himself in the comfort of his own home, in the same way that people with diabetes can monitor their own blood sugar levels. A year ago at a London conference, he “saw this chap on stage with this little device,” he recalls. That was Clive Brown.

Brown spoke about using nanopore sequencing on people, to analyze the bits of DNA that are released into our bloodstreams by our dying cells. To cancer researchers, this circulating DNA acts as a liquid biopsy, which can reveal whether tumors are progressing, responding to treatments, or evolving resistance to drugs. Many companies, Illumina included, are getting in on the action, and developing blood-based tools for cancer screening.

But Brown thinks that if MinION and VolTRAX become cheap and accurate enough, people could monitor their circulating DNA themselves. “We need to get the price down by an order of magnitude, but there’s no reason why you couldn’t take a daily snapshot of the contents of your blood,” he tells me. He wants to bridge the worlds of DNA sequencing and the quantified self. “My intention is to give people a tool where they can understand their own biology and make their own inferences about it.”

Griffin lit up when he heard Brown’s vision. Maybe he could eventually monitor his own BCR-ABL levels and just upload the data to his doctors. “The power it could give to patients … Psychologically, it feels so important,” he says. He has been liaising with Oxford Nanopore ever since, and even though they’ve assured him that the technology still needs work, he is undeterred. “I want to be the guinea pig—the first person with CML to monitor my blood at home. I think this will mean everything to so many people.”

Daily monitoring might also reveal signs of an infection before symptoms occur. And it might reveal answers to questions that haven’t been asked yet. “No one has systematically inventoried circulating DNA over a long period, even in just one person,” says Brown. “What’s the baseline? It’s unknown at the minute. But we can get the data.”